Mini-model method based on k -means clustering

نویسندگان

  • Marcin PIETRZYKOWSKI
  • Marcin PLUCIŃSKI
چکیده

Mini-model method (MM-method) is an instance-based learning algorithm similarly as the k-nearest neighbor method, GRNN network or RBF network but its idea is different. MM operates only on data from the local neighborhood of a query. The paper presents new version of the MM-method which is based on k-means clustering algorithm. The domain of the model is calculated using k-means algorithm. Clustering method makes the learning procedure simpler. Streszczenie. Metoda mini-modeli (metoda MM) jest algorytmem bazującym na próbkach podobnie jak metoda k-najbliższych sąsiadów, sieć RBF czy sieć GRNN ale jej zasada działania jest inna. MM operuje tylko na danych z najbliższego otoczenia punktu zapytania. Artykuł prezentuje nową wersję metody MM, która bazuje na algorytmie k-średnich. Domena MM jest obliczana przy pomocy algorytmu k-średnich. Użycie algorytmu klasteryzacji uprościło procedurę uczenia. (Metoda mini-modeli bazująca na algorytmie k-średnich)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A hybrid DEA-based K-means and invasive weed optimization for facility location problem

In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...

متن کامل

Comparing Model-based Versus K-means Clustering for the Planar Shapes

‎In some fields‎, ‎there is an interest in distinguishing different geometrical objects from each other‎. ‎A field of research that studies the objects from a statistical point of view‎, ‎provided they are‎ ‎invariant under translation‎, ‎rotation and scaling effects‎, ‎is known as the statistical shape analysis‎. ‎Having some objects that are registered using key points on the outline...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering

Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016